Pd(II)-Catalyzed Enantioselective C(sp³)-H Borylation

Jian He, Qian Shao, Qingfeng Wu, and Jin-Quan Yu *J. Am. Chem. Soc.*, **2017**, *139*, 3344-3347

Serene Tai Current literature 10 June 2017

Transformations of Boronates

Thermodynamics of Methane Borylation

B₂(OR)₄ as B-Source:^a

Catalytic C-H Borylation

Rhenium (Hartwig, JACS 1999)

Rhodium (Hartwig, Science 2000)

Rhodium (Marder, ACIE 2001)

Iridium (Smith, Science 2002)

Pd-Catalyzed C-H Borylation

5

Pd-Catalyzed C(sp³)-H Borylation

Enantioselective Pd-Catalyzed C(sp³)-H Activation

Limited to substrates containing α -quarternary carbon centers

J. Am. Chem. Soc., **2011**, *133*, 19598 *J. Am. Chem. Soc.*, **2014**, *136*, 8138

Quinoline-based Ligands

Conditions Optimization

Entry	Variation from standard conditions	Yield (%)	ee (%)
1	none	82	95.6
2	No Pd(CH ₃ CN) ₄ (OTf) ₂	n.d.	-
3	No K ₂ HPO ₄	n.d.	-
4	No <i>(S,R)-</i> L1	21	0
5	(S,R)-L1 (20 mol%)	85	93.4
6	Pd(CH ₃ CN) ₄ (OTf) ₂ (5 mol%)	67	89.0
7	Pd(OAc) ₂	63	78.4
8	KHCO ₃	58	89.4
9	CH ₃ CN only	64	93.4
10	DCE only	19	72.4
11	CH ₃ CN/DCE (4:1)	65	95.6
12	60 °C	38	95.4
13	Under air (cap vial)	61	94.8

Ligand Optimization

Substrate Scope for Cyclobutanecarboxylic Amides

11

Substrate Scope for Other Cyclic Amides

Substrate Scope for Other Cyclic/Acyclic Amides

Synthetic Applications

Proposed Catalytic Cycle

Proposed Asymmetric Induction Model

Intermediate A, favored

vs

Intermediate B, disfavored

Conclusions

- First enantioselective Pd(II)-catalyzed C(sp³)-H borylation was developed
- Chiral bidentate APAO ligand induce excellent enantioselectivity
- This method is compatible with substrates containing α-tertiary and α-quarternary carbon centers
- Borylated carbocyclics can serve as useful small building blocks to other functionalities

Rhenium cat. - Hartwig

Catalytic cycle

Rhodium cat. – Hartwig/Marder

20

Iridium cat. – Smith

Catalytic cycle

Palladium cat. - Suginome

 $-H_2$

of Me₂S

Palladium cat. – Ortho-borylation Yu

